血流动力学监测一

2021-5-31 来源:本站原创 浏览次数:

得了白癜风怎么治疗 http://www.baidianfeng51.cn/SpecialList.html

血流动力学

锁定

目录

1简介

2内容

3特点

?血流量和血流速度

?泊肃叶定律

?层流和湍流

?血流阻力

?血液粘滞度

4决定因素

?血流量

?血流阻力

?血流动力学改变

简介

血流动力学指血液变形和流动的科学。血流动力学是以血液与血管的流

血流动力学

动和变形为研究对象,探讨血液和血浆的粘稠度对身体的影响。血流动力学检查,包括血液比粘度(血比粘度、血浆比粘度、全血比粘度)、红细胞电泳、红细胞沉降率、纤溶系统功能等。

血流动力学和一般的流体力学一样,其基本的研究对象是流量、阻力、和压力之间的关系。由于血管是有弹性和可扩张性的管道系统,血液是含有血细胞和胶体物质等多种成分的液体而不是理想液体,因此,血流动力学除与一般流体力学有共同点之外,又有它自身的特点。

内容

血流动力学(hemodynamics)是指血液在心血管系统中流动的力学,主要研究血流量、血流阻力、血压以及它们之间的相互关系。血液是一种流体,因此血流动力学基本原理与一般流体力学的原理相同。但由于血管系统是比较复杂的弹性管道系统,血液是含有血细胞和胶体物质等多种成分的液体而不是理想液体,因此血流动力学既具有一般流体力学的共性,又有其自身的特点。

特点血流量和血流速度

血流量(bloodflow)指在单位时间内流经血管某一截面的血量,也称为容积速度。通常表示为毫升/分钟或升/分钟。血流速度(bloodvelocity)指血液中一个质点在管内移动的线速度。当血液在血管内流动时,血流速度与血流量成正比,而与血管的横截面积成反比。

泊肃叶定律

泊肃叶研究了液体在管道系统中流动的规律。通过泊肃叶定律(Poiseuilleslaw)可以计算出流量。该定律表示为:

也可表示为:

其中,Q是液体流量,ΔP是管道两端的压力差,r为管道半径,L是管道长度,η是液体的粘滞度。K为常数,与液体粘滞度η有关。由该式可知单位时间内的血流量与血管两端的压力差(P1﹣P2)以及血管半径的4次方成正比,而与血管的长度成反比。在其他因素相同的情况之下,如果甲血管的半径是乙血管的两倍,那么,前者的血流量是后者的16倍。所以血管直径是决定血流量多少的重要因素。

层流和湍流

血液在血管内的流动方式可以分为层流(laminarflow)和湍流(turbulence)。层流是一种规则运动,在层流的情况下,液体每个质点的流动方向一致,与管道长轴平行,但各质点的流速不同,在管道轴心处流速最快,越近管壁的轴层流速越慢,各轴层速度矢量为一抛物线图(图4-16)。

泊肃叶定律适用于层流状态。人体的血液循环在正常情况下属于层流形式。然而,当血流速度加速到一定程度之后,层流情况即被破坏,此时血液中各个质点的流动方向不再一致,出现漩涡,称为湍流。在湍流的情况下,泊肃叶定律已不再适用。湍流的形成条件以雷诺数(Reynolds数,简写为Re)来判断。这一参数定义为:

其中,Re数没有单位。V为血液的平均流速(单位为cm/s),D代表管腔直径(单位为cm),ρ为血液密度(单位为g/cm3),η代表血液粘滞度(单位为泊)。通常当Re数超过时,就可发生湍流。由上式可知,在血流速度快、血管口径大、血液粘滞度低的情况下,容易发生湍流。正常情况下,心室内存在着湍流,一般认为这有利于血液的充分混和。病理情况下,如房室瓣狭窄、主动脉瓣狭窄以及动脉导管未闭等,均可因湍流形成而产生杂音。

血流阻力

血流阻力(bloodresistance)指血液在血管内流动时所遇到的阻力。其产生的原因是由于血液流动时发生摩擦。摩擦消耗的能量一般表现为热能,这部分热能不能再转换成血液的势能或动能。因此血液流动时的能量逐渐消耗,促使血液流动的压力逐渐降低。湍流时,血液在血管中的流动方向不一致,阻力更大,故消耗的能量更多。

血流阻力一般不能直接测量,而是要通过测量血流量和血管中两端压力差计算得出。三者关系可用下式表示:

式中Q代表血流量,P1-P2代表血管两端压力差,R代表血流阻力。该式表明血流阻力与血管两端的压力差成正比,与血流量成反比。结合泊肃叶定律,可得到计算血流阻力的公式:

式中R代表血流阻力,η代表血流粘滞度,L为血管长度,r为血管半径。由该式可知血流阻力与血管的粘滞度以及血管长度成正比,与血管半径的4次方成反比。当血管长度相同时,血液粘滞度越大,血管直径越小,血流的阻力也就越大。在同一血管床内,L与η在一段时间内变化不大,影响血流阻力的最主要因素为血管半径。因此体内各段血管中以微动脉处的阻力最大。机体对血流量的分配调节就是通过控制各器官阻力血管的口径进行的。

血液粘滞度

血液粘滞度(bloodviscosity)的变化也可以影响血流阻力。在其他因素恒定情况下,粘滞度越高,血管阻力越大。正常血液的粘滞度为水的4~5倍。影响血液粘滞度的主要因素有:

1.血细胞比容血液中血细胞占全血容积的百分比称为血细胞比容(hematocrit),是决定血液粘滞度最重要的因素。男性血细胞比容平均值约为42%,女性约为38%。血细胞比容越大,血液粘滞度就越高。

2.血流的切率血流的切率(shearrate)是指在层流的情况下,相邻两层血液流速的差和液层厚度的比值。切率也就是上图抛物线的斜率。匀质液体的粘滞度不随切率的变化而改变,称为牛顿液。相反,全血为非匀质液体,其粘滞度则随切率的减小而增大,称为非牛顿液。切率较高时,层流现象更为明显,即红细胞集中在中轴,其长轴与血管纵轴平行,红细胞移动时发生的旋转以及红细胞相互间的撞击都很少,故血液粘滞度较低。相反当切率较低时,红细胞发生聚集,血液粘滞度增高。

3.血管口径大的血管口径不影响血液粘滞度,但当血液在直径小于0.2~0.3mm的微动脉内流动时,只要切率足够高,则血液粘滞度随着血管口径的变小而降低。其原因尚不清楚,但对机体有明显的益处。否则血液在小血管中的流动时阻力将会大为增高。

4.温度血液的粘滞度随温度的降低而升高。人体的体表温度比深部温度低,故血液流经体表部分时粘滞度会升高。如果将手指浸在冰水中,局部血液的粘滞度可增加2倍。

决定因素血流量

血流量是指单位时间内流过血管某一横截面的血量,也成容积速度。通常以mL/min或L/min为单位。血流量的大小主要取决于两个因素,即血管两端的压力差和血管对血流的阻力。再循环系统中,血流量、血流阻力和血压三者之间有如下关系:

Q=(p2-p1)/Rp2-p1代表血管两端压力差、R代表血流阻力、Q代表血流量。

血流量同该段管道两端的压力差成正比,与管道对液体流动的阻力成反比。

血流阻力

血流在血管内流动所遇到的阻力。血流阻力来源于血液内部的摩擦力以及血液与管壁之间的摩擦力,并与血管口径、长度以及血液粘滞性密切相关,它们之间的关系可用泊肃叶定律(Poiseuille”slaw)来表示:

Q=π×r^4×Δp/(8ηL)η为血液粘滞度、L为血管的长度、r为血管半径。(可查阅血管生理)

血流动力学改变

血液是一种具有相当粘性的流体。在正常情况下,血液的粘度系数是水的3-4倍。由于血液是一种复杂的流体,既有液相(血浆)又有固相(血细胞等),影响血液粘性的因素比较多。

在多数情况下,血液的粘度主要决定于血液中红细胞数。每毫升血液中红细胞数愈多则粘度愈大。贫血时红细胞减少,则血液粘度降低,而红细胞增多症的患者,血液粘度增加,血液在血管内流动,对血流的阻力是来自血液内部摩擦,即血液的粘度。

在整个心动周期中,主动脉中血流平均速度只有临界速度的一半,但在心缩开始时射血期内速度会超过临界速度。剧烈运动时,心输出量增加4-5倍,心缩期间有较长的时期主动脉血流速度超过临界速度,出现湍流。

正常情况下,除心瓣膜附近外,循环系统的其他部位不会有湍流。层流是平静的,没有音响的。湍流有涡旋和震动,出现噪音。因此,在循环中听到异常的噪音就应注意是什么原因引起的。

简单来说,人体血流动力学的改变,说明身体内部由于疾病的产生和存在,因此出现了问题。

血流动力学监测

编辑

本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!

用于心肌梗死、心力衰竭、急性肺水肿、急性肺动脉栓塞、各种原因导致的休克、心跳呼吸骤停、严重多发伤、多器官功能衰竭、重大手术围手术期等危重病症需严密监测循环系统功能变化者,以便指导心血管活性药物的应用。

中文名

血流动力学监测

对象

重大手术围手术期等危重病症者

用途

指导心血管活性药物的应用

主要检测指标

上肢动脉血压(AP)

一、用品及方法

(一)漂浮导管法

漂浮导管目前临床常用的有两种:

①普通型导管,以冷盐水为指示剂,通过导管近端孔注入右心室,与血流混匀升温后流入肺动脉,经导管顶端热敏电阻感知温差变化,经计算机计算出心排量,此法需人工间断测得;

②改进型Swan-Ganz导管,在导管右心室近端有一热释放器,通过发射能量脉冲使局部血流升温,与周围血混匀降温并流入肺动脉,经顶端热敏电阻感知而计算出心排量,从而可连续测得心排量,减少了操作误差、细菌感染、循环负荷改变等并发症。

(二)无创血流动力学监测

临床常用的有经食管超声心动图法、体表置电极心电阻抗血流图和多普勒超声波技术方法,具有损伤性、操作简便等优点,绝对值误差较大,作为动态监测有意义。

三、主要监测指标

(一)直接测量所得指标

1.上肢动脉血压(AP)

正常值:收缩压12.0~18.7kPa(90~mmHg),舒张压8.0~12.0kPa(60~90mmHg)。

心排量、全身血管阻力、大动脉壁弹性、循环容量及血液粘度等均可影响动脉血压,其关系可用以下公式表示:平均动脉压=心输出量×全身血管阻力+右房压。

2.心率(HR)

正常值:60~/min。

反映心泵对代谢改变、应激反应、容量改变、心功能改变的代偿能力。心率适当加快有助于心输出量的增加,次/min,心输出量会明显下降。

3.中心静脉压(CVP)

正常值:0.49~1.18kPa(5~12cmH20)。

体循环血容量改变、右心室射血功能异常或静脉回流障碍均可使CVP发生变化,胸腔、腹腔内压变化亦可影响CVP测定结果。

4.右心房压(RAP)

正常值:0~1.07kPa(0~8mmHg)。

反映循环容量负荷或右心室前负荷变化,比CVP更为准确。心包积液及右心衰竭时可造成相对性右室前负荷增加,右室流入道狭窄(如三尖瓣狭窄)时右房压不能完全代表右室前负荷。

5.右心室压(RVP)

正常值:收缩压2.00~3.33kPa(15~25mmHg),舒张压0~1.07kPa(0~8mmHg)。

收缩压一般反映肺血管阻力及右心室后负荷、右室心肌收缩状态,舒张压意义同RAP。

6.肺动脉压(PAP)

正常值:收缩压2.00~3.33kPa(15~25mmHg),舒张压1.07~1.87kPa(8~14mmHg),平均压1.33~2.67kPa(10~20mmHg)。

反映右心室后负荷及肺血管阻力的大小,肺动脉平均压超过3.33kPa时称肺动脉高压症;在肺实质及肺血管无病变情况下,它在一定程度上反映左心室前负荷。

7.肺毛细血管嵌顿压(PCWP)

正常值:0.80~1.60kPa(6~12mmHg)。

反映肺静脉压状况,一般情况下肺循环毛细血管床阻力较低,故PCWP能较准确地反映左室舒张末期压力(LVEDP),从而反映了左心室前负荷大小。要注意在下列情况下PCWP可能高于LVEDP:

①二尖瓣狭窄或左心房粘液瘤梗阻左室流入道。

②肺静脉阻塞。

③肺泡内压增高(如持续正压通气)。在左心室壁病变僵硬时,PCWP可能低于LVEDP。

8.心输出量(CO)

正常值:4~6L/min。

用温度稀释法所得的结果实际上是右室输出量。输出量大小受心肌收缩力、心脏的前负荷、后负荷及心率等4个因素影响。表示为:CO=SV(心室每搏量)×HR(心率)。

(二)由直接测量指标所派生的指标

1.心脏排血指数(CI)

正常值:2.6~4.0L?min-1?m-2(43.4~66.8ml?s-1?m-2)。

经体表面积化后排除了体重不同对心输出量的影响,更准确地反映了心脏泵血功能。2.4kPa(18mmHg)时心源性可能性大,3.3kPa(25mmHg)时则心源性水肿可以肯定,2.5L?min-1?m-2,PCWP次/分,动脉收缩压18.6kPa(mmHg),可考虑应用镇静剂或小剂量B阻滞剂。

2.肺瘀血型CI2.5L?min-1m-2,PCWP2.0kPa(15mmHg),治疗目标为降低PCWP,可应用利尿剂、静脉扩张药。

3.低血容量型CI2.0kPa(15mmHg),治疗目标为提高CI、降低PCWP,使用血管扩张剂、利尿剂,必要时加用正性肌力药物。

5.心源性休克型CI4.0kPa(30mmHg),治疗目标为提高CI、降低PCWP,以正性肌力药及血管扩张药为主,同时可采用主动脉内气囊反搏治疗。

6.右心室梗死型CI2.5L?min-1?m-2,CVP或RAP升高,PCWP(四)了解肺换气功能及全身氧动力学状况

根据动脉和混合静脉血血气结果、吸入氧浓度等,可经有关公式计算出肺的换气功能和全身氧动力学指标,从而指导临床诊治。

血流动力学

词条已锁定

血流动力学是指血液在心血管系统中流动的力学,主要研究血流量、血流阻力、血压以及它们之间的相互关系。血液是一种流体,因此血流动力学基本原理与一般流体力学的原理相同。但由于血管系统是比较复杂的弹性管道系统,血液是含有血细胞和胶体物质等多种成分的液体而不是理想液体,因此血流动力学既具有一般流体力学的共性,又有其自身的特点。

目录

1简介

2特点

血流量和血流速度

泊肃叶定律

层流和湍流

血流阻力

血液粘滞度

3决定因素

血流量

血流阻力

改变

1简介

血流动力学指血液变形和流动的科学。血流动力学是以血液与血管的流动和变形为研究对象,探讨血液和血浆的粘稠度对身体的影响。血流动力学检查,包括血液比粘度(血比粘度、血浆比粘度、全血比粘度)、红细胞电泳、红细胞沉降率、纤溶系统功能等。

血流动力学和一般的流体力学一样,其基本的研究对象是流量、阻力、和压力之间的关系。由于血管是有弹性和可扩张性的管道系统,血液是含有血细胞和胶体物质等多种成分的液体而不是理想液体,因此,血流动力学除与一般流体力学有共同点之外,又有它自身的特点。

2特点血流量和血流速度

血流量(bloodflow)指在单位时间内流经血管某一截面的血量,也称为容积速度。通常表示为毫升/分钟或升/分钟。血流速度(bloodvelocity)指血液中一个质点在管内移动的线速度。当血液在血管内流动时,血流速度与血流量成正比,而与血管的横截面积成反比。

泊肃叶定律

泊肃叶研究了液体在管道系统中流动的规律。通过泊肃叶定律(Poiseuilleslaw)可以计算出流量。该定律表示为:

也可表示为:

其中,Q是液体流量,ΔP是管道两端的压力差,r为管道半径,L是管道长度,η是液体的粘滞度。K为常数,与液体粘滞度η有关。由该式可知单位时间内的血流量与血管两端的压力差(P1﹣P2)以及血管半径的4次方成正比,而与血管的长度成反比。在其他因素相同的情况之下,如果甲血管的半径是乙血管的两倍,那么,前者的血流量是后者的16倍。所以血管直径是决定血流量多少的重要因素。

层流和湍流

血液在血管内的流动方式可以分为层流(laminarflow)和湍流(turbulence)。层流是一种规则运动,在层流的情况下,液体每个质点的流动方向一致,与管道长轴平行,但各质点的流速不同,在管道轴心处流速最快,越近管壁的轴层流速越慢,各轴层速度矢量为一抛物线图(图4-16)。

泊肃叶定律适用于层流状态。人体的血液循环在正常情况下属于层流形式。然而,当血流速度加速到一定程度之后,层流情况即被破坏,此时血液中各个质点的流动方向不再一致,出现漩涡,称为湍流。在湍流的情况下,泊肃叶定律已不再适用。湍流的形成条件以雷诺数(Reynolds数,简写为Re)来判断。这一参数定义为:

其中,Re数没有单位。V为血液的平均流速(单位为cm/s),D代表管腔直径(单位为cm),ρ为血液密度(单位为g/cm3),η代表血液粘滞度(单位为泊)。通常当Re数超过时,就可发生湍流。由上式可知,在血流速度快、血管口径大、血液粘滞度低的情况下,容易发生湍流。正常情况下,心室内存在着湍流,一般认为这有利于血液的充分混和。病理情况下,如房室瓣狭窄、主动脉瓣狭窄以及动脉导管未闭等,均可因湍流形成而产生杂音。

血流阻力

血流阻力(bloodresistance)指血液在血管内流动时所遇到的阻力。其产生的原因是由于血液流动时发生摩擦。摩擦消耗的能量一般表现为热能,这部分热能不能再转换成血液的势能或动能。因此血液流动时的能量逐渐消耗,促使血液流动的压力逐渐降低。湍流时,血液在血管中的流动方向不一致,阻力更大,故消耗的能量更多。

血流阻力一般不能直接测量,而是要通过测量血流量和血管中两端压力差计算得出。三者关系可用下式表示:

式中Q代表血流量,P1-P2代表血管两端压力差,R代表血流阻力。该式表明血流阻力与血管两端的压力差成正比,与血流量成反比。结合泊肃叶定律,可得到计算血流阻力的公式:

式中R代表血流阻力,η代表血流粘滞度,L为血管长度,r为血管半径。由该式可知血流阻力与血管的粘滞度以及血管长度成正比,与血管半径的4次方成反比。当血管长度相同时,血液粘滞度越大,血管直径越小,血流的阻力也就越大。在同一血管床内,L与η在一段时间内变化不大,影响血流阻力的最主要因素为血管半径。因此体内各段血管中以微动脉处的阻力最大。机体对血流量的分配调节就是通过控制各器官阻力血管的口径进行的。

血液粘滞度

血液粘滞度(bloodviscosity)的变化也可以影响血流阻力。在其他因素恒定情况下,粘滞度越高,血管阻力越大。正常血液的粘滞度为水的4~5倍。影响血液粘滞度的主要因素有:

1.血细胞比容血液中血细胞占全血容积的百分比称为血细胞比容(hematocrit),是决定血液粘滞度最重要的因素。男性血细胞比容平均值约为42%,女性约为38%。血细胞比容越大,血液粘滞度就越高。

2.血流的切率血流的切率(shearrate)是指在层流的情况下,相邻两层血液流速的差和液层厚度的比值。切率也就是上图抛物线的斜率。匀质液体的粘滞度不随切率的变化而改变,称为牛顿液。相反,全血为非匀质液体,其粘滞度则随切率的减小而增大,称为非牛顿液。切率较高时,层流现象更为明显,即红细胞集中在中轴,其长轴与血管纵轴平行,红细胞移动时发生的旋转以及红细胞相互间的撞击都很少,故血液粘滞度较低。相反当切率较低时,红细胞发生聚集,血液粘滞度增高。

3.血管口径大的血管口径不影响血液粘滞度,但当血液在直径小于0.2~0.3mm的微动脉内流动时,只要切率足够高,则血液粘滞度随着血管口径的变小而降低。其原因尚不清楚,但对机体有明显的益处。否则血液在小血管中的流动时阻力将会大为增高。

4.温度血液的粘滞度随温度的降低而升高。人体的体表温度比深部温度低,故血液流经体表部分时粘滞度会升高。如果将手指浸在冰水中,局部血液的粘滞度可增加2倍。

3决定因素血流量

血流量是指单位时间内流过血管某一横截面的血量,也成容积速度。通常以mL/min或L/min为单位。血流量的大小主要取决于两个因素,即血管两端的压力差和血管对血流的阻力。再循环系统中,血流量、血流阻力和血压三者之间有如下关系:

Q=(p2-p1)/Rp2-p1代表血管两端压力差、R代表血流阻力、Q代表血流量。

血流量同该段管道两端的压力差成正比,与管道对液体流动的阻力成反比。

血流阻力

血流在血管内流动所遇到的阻力。血流阻力来源于血液内部的摩擦力以及血液与管壁之间的摩擦力,并与血管口径、长度以及血液粘滞性密切相关,它们之间的关系可用泊肃叶定律(Poiseuille”slaw)来表示:

Q=π×r^4×Δp/(8ηL)η为血液粘滞度、L为血管的长度、r为血管半径。(可查阅血管生理)

改变

血液是一种具有相当粘性的流体。在正常情况下,血液的粘度系数是水的3-4倍。由于血液是一种复杂的流体,既有液相(血浆)又有固相(血细胞等),影响血液粘性的因素比较多。

在多数情况下,血液的粘度主要决定于血液中红细胞数。每毫升血液中红细胞数愈多则粘度愈大。贫血时红细胞减少,则血液粘度降低,而红细胞增多症的患者,血液粘度增加,血液在血管内流动,对血流的阻力是来自血液内部摩擦,即血液的粘度。

在整个心动周期中,主动脉中血流平均速度只有临界速度的一半,但在心缩开始时射血期内速度会超过临界速度。剧烈运动时,心输出量增加4-5倍,心缩期间有较长的时期主动脉血流速度超过临界速度,出现湍流。

正常情况下,除心瓣膜附近外,循环系统的其他部位不会有湍流。层流是平静的,没有音响的。湍流有涡旋和震动,出现噪音。因此,在循环中听到异常的噪音就应注意是什么原因引起的。

简单来说,人体血流动力学的改变,说明身体内部由于疾病的产生和存在,因此出现了问题。

血液动力学

该版本已锁定

摘要

血液动力学(2)

血液动力学是生物力学的一个分支,其主要任务是应用流体力学的理论和方法研究血液沿血管循环流动的原因、条件、状态以及各种影响因素,以阐明血液流动的规律、生理意义及与疾病的关系。

中文名:血液动力学

所属:生物力学

主要任务:研究血液沿血管循环流动等

内容:血液循环由心脏、血液和血管构成

目录

1一、血液动力学…

1.11动脉系统血液动…

1.21-2动脉狭窄及其…

1.31-3动脉瘤

1.41-4支架治疗

2二、心脏血液动…

展开

一、血液动力学研究方法

由于心血管系统结构的三维和多尺度特性,心血管系统所产生的力学现象非常复杂,仅仅依靠以往的计算力学和计算流体力学(CFD)方法远远不够,因此,基于图像的三维建模,流体-固体-生理现象耦合解析技术等是分析心血管复杂系统不可或缺的。耦合分析不只是狭义的流固耦合,而是应用计算力学手段探究构成人体系统的广泛的物理化学现象,最终形成生物医学技术的创新应用。

近年,计算机断层扫描技术(CT),核磁共振技术(MRI),超声(US)和数字减影图像(DSA)等医学影像技术(DSA)为建立基于精确解剖结构的个性化三维模型提供了可靠的数据基础。计算流体力学,有限元分析,流固耦合技术以及高性能计算机硬件的发展为血液动力学特性分析提供了有力的理论基础。

通过逆向工程技术,采用透明硅橡胶可以制作出真实结构的各种正常和病变血管模型,利用PIV(ParticleImagingVelocimetry)可视化技术体外观测血液流动特性,一方面可以验证数值模拟的有效性,另一方面为手术设计,药物研发和临床训练的血管内操作提供非常有用的工具。

除此之外,一维和零维心血管系统模型能够很好地描述全身心血管系统脉搏波传递以及血压和流量波的相位变化,是研究血液动力学非常重要和有效的工具。

经过四十多年的发展,一维模型建模方法在不断完善。速度剖面形状会直接影响动量方程的形式及壁面应力的估值,常用的速度剖面有平整性、抛物线型,幂函数型,Stokes边界层型,周期性速度剖面等。而管壁的运动直接影响压力波的传播波速和脉动特征。在一维血流动力学模型中,管壁运动通过状态方程来表征,表示为跨壁压差和截面积的关系。根据线弹性理论的Laplace方程推导得到的状态方程可以较好地描述正常状态下的血流特性。

动脉内的血液流动主要受小动脉影响,但小动脉结构复杂而且不容易观测,使得很难建立合适的模型来描述小动脉对动脉内脉动波传播的影响。把小血管和毛细血管看成大血管出口边界的延伸,则可以用不同出口边界条件描述小动脉的影响。目前,常用的出口边界条件有三种,包括:纯阻抗模型,只使用一个阻抗元件来描述出口处压力和流量的关系,但该模型不能描述压力波和流量波的相位延迟特征。第二种是三元件弹性腔模型。这两种模型虽然简洁,但不同生理病理条件下的阻抗和顺应性的估计是一个难点。小血管树模型利用人体动脉网络的分型规律建立二叉树结构,然后利用拟线性分析理论获取大动脉出口处的压力和流量关系。结构树模型用较少的假定较全面地模拟了小血管树的阻抗。

1动脉系统血液动力学

劲动脉分叉,腹主动脉,左冠状动脉,心脏及近端主动脉是较易产生病变的部位,因此,这些部位的正常及病理状态下的血液动力学特性就成为

转载请注明:
http://www.iqspm.com/ynyys/10999.html
  • 上一篇文章:

  • 下一篇文章:
    • 没有热点文章
    • 没有推荐文章
    网站首页 版权信息 发布优势 合作伙伴 隐私保护 服务条款 网站地图 网站简介
    医院地址: 健康热线:
    温馨提示:本站信息不能作为诊断和医疗依据
    版权所有 2014-2024
    今天是: